Make your own free website on Tripod.com
Geometry

Examples

Home | Area Formulas | Volume Fomulas | Examples | Practice Problems | Answers

Examples for you to see how to solve for the volume and  the area of the solids .

Example for Prims

prims ex.JPG

Example for a Pyramid

pyramind ex.JPG

Example for a cylinder

clinder ex.JPG

Solving for the Surface area .
1 .Find the area and the perimeter of the base 
  •  B = 5(10) = 50 in2
  •  P= 10 + 10 +5 +5=30 in  

2. Plug it in and solve

  •  S= 2B + Ph 
  •  S= 2(50) + 30(6)
  •  S= 100 +  180
  •  S=  280 in 2

                  

Solving for the Surface Area.

1. Find the perimeter and the area of the base .
  • P= 5 +5 + 10 + 10 = 30 in
  • B= 10(5) = 50in.2

2. Plug it in into the formula and solve.

  • S= B + 1/2 x PL  
  • S= 50 + 1/2 x 30 (13)
  • S= 50 +  195
  • S= 245 in 2

Solving for the Surface Area

1. Plug it into the formula and solve .
 
  • S= 2(PI)rh + 2(PI)r2
  • S= 2( PI) (4)(8) + 2(PI) (4)2
  • S= (PI) 64  + (PI) 32
  • S= 96(PI)in square

 

 

 
 
 
 

Solving for the Volume.

1. Find the area of the base .
  •  B= 5(10) = 50 in square

2. Plug it in and solve .

  • V= BH
  • V= 50(6)
  • V= 300 in 3

Solving for the Volume.

1. Find the volume of the base.

  • B = 5(10) = 50 in suquare

2. Plug it in and solve using the formula.

  • V= 1/3 Bh
  • V=1/3 x 50 (12)
  • V= 1/3 x 600
  • V= 200 in 3
 
 

Solving for the Volume.

1. Plug it in and solve .
 
  • V= (PI)r2 h
  • V= (PI)( 4) 2(8)
  • V=  (PI) (16)(8)
  • V= 120(PI) in 3

Example of a Cone

cone ex.JPG

Example of a Sphere

sphere ex.JPG

Solving for the Surface Area

1. Plug it in and solve usinf the formula .
 
  • S= (PI)r 2  + (PI)rL
  • S= (PI)(4)2  + (4)(6)
  • S= 16 (PI) + 24(PI)
  • S= 40(PI)in2   
 

Solving for Surface Area

1.Plug it in and solve.
 
  • S= 4(PI) r2
  • S= 4(PI) 5 2
  • S= 4(PI) 25
  • S= 100(PI) in 2

Solving for the volume
 
 

1. Plug the corresponding number into the formula and solve .
 
* use the pythagorean theorem to get the height
 
  • V= 1/3 (PI)r 2 h
  • V= 1/3 (PI) (4)  2 (4.47)
  • V= 23. 84 (PI)in3   
 
 

Solving fot the volume

1. Plug the numbers in and solve.
  • V= (4/3)(PI) r 3
  • V= (4/3) (PI) (5)3
  • V= (4/3) (PI) 125
  • V= (500)(1/3) (PI)
  • V=  166.67 (PI)in 3